
Buoyancy-dominated laminar convection 
and radiation transfer in rod arrays 
A. K. Mohanty* and R. Viskantal 
Laminar combined free and forced convection together with radiation transfer in flow of 
steam at 68 bar through rods in triangular and square arrays have been investigated 
numerically. The pitch to diameter ratio has been varied from 1.2 to 2.0. Heat transfer results 
have been obtained for both up and down forced flow influenced by buoyancy with and 
without the effects of variable thermophysical fluid properties. The Rosseland diffusion 
approximation has been used for radiative transfer. First- and second-order density changes 
have been investigated. 
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Introduction 

Recent interest in studies of rod-bundle heat transfer stem from 
the need to predict the thermal hydraulic performance of 
nuclear reactors in the event of a severe transient such as a loss of 
coolant accident (LOCA). Postaccident investigations t 3 have 
led to reconstruction of the transient scenario that can be used 
for increasingly realistic modeling of the LOCA-related thermal 
hydraulic studies. A closer modeling, however, needs a 
complementary heat transfer database. 

Consider the situation prevailing in a partly uncovered 
nuclear reactor core. The system pressure would have decreased 
to a level, for example, 68 bar, in case of the TMI-2 depending 
on the duration the pressure-operated relief valve (PORV) 
remained (stuck) open. The steam generated at the froth (two- 
phase mixture) level would move upward along the rod channels 
but it would be influenced significantly by buoyancy. The rod to 
steam temperature difference could be so high as to additionally 
cause radiation to be a significant mode of heat exchange. 3 

With longer heights of uncovered core, the cladding 
temperature may exceed the threshold limit of oxidation and 
react with the steam. Significant oxidation of the cladding can 
cause ballooning and degradation of Zircaloy cladding even 
before the fuel elements reach their melting temperature. 4 

An analysis of cladding oxidation, therefore, requires steam 
heat transfer coefficient data that takes into account (1) the rod- 
bundle geometry; (2) high system pressure, nominally 68 bar; (3) 
variation of thermophysical properties with temperature at the 
prevailing system pressure; (4) combined free and forced 
convection as well as radiation transfer; and (5) the possibility 
that the rod to steam temperature difference could be too high to 
permit Boussinesq's assumption to remain valid. 

Needless to say, transport rates satisying these requirements 
are not available in the literature. Under the circumstance, the 
reported thermal-hydraulic studies have assumed 5'6 the square 
array rod-bundle geometry to be an annulus whose outer 
boundary is made up of the interrod symmetry lines and whose 
center is occupied by a fuel rod. Fully developed laminar or 
turbulent forced convection heat transfer coefficients for the so 
imagined annulus are then used as the input model parameter. 

At a high temperature, when the Zircaloy cladding reacts with 
steam, the steam is depleted, and hydrogen is generated, 
resulting in a change in the thermophysical properties of the 
coolant mixture. This, however, would not occur at all heights 
of the uncovered core but only at locations where the cladding 
temperature has exceeded the oxidation threshold value. 
Estimates of hydrogen generation have to be made by analyzing 
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combined heat and mass transfer along the length of a fuel rod 
using appropriate transport rates. 

The earliest studies v's of rod-bundle heat transfer date back to 
1959. The studies have been carried out for two types of 
geometries: infinite or simply connected and finite or multiply 
connected, the latter being pertinent to smaller-sized reactors. 
Much of the information available until 1977 was summarized 
by Shah and London 9 and updated through 1982 by Kakac et 
al. t°  

To date, analysis of heat transfer in rod bundles has been 
mostly limited to constant property fluids, the attention being 
focused on modeling the complex geometries. Studies of laminar 
combined free and forced convection in upward flow through 
triangular and square array of rods were first reported by Iqbal 
et al., 11 who subsequently have considered a conjugate 
analysis. 12 Ramm and Johannsen 13 focused on the strong 
influence the buoyancy and power-skew can cause in inverting 
the temperature and velocity profiles in flow through rod 
bundles. Yang i4'15 showed the quantitative influence of 
buoyancy in decreasing heat transfer and increasing resistance 
in downward flow through triangular and square rod arrays. 

More recently, Das and Mohanty 16 have reported on a 
combined free and forced convection heat transfer study for 
both upward flow and downward flow in finite bundles. The 
influence of power-skew and the ratio Gr/Re on heat transfer, 
friction factor, separation, and flow reversal has been 
demonstrated. Recently, Zhong et al. 17 pointed out the 
inadequacies of Boussinesq's assumption and have suggested an 
upper limit of temperature difference for the approximation to 
be valid. 

In this study, we try to generate the transport rate coefficients 
in the transverse direction, complying with the five conditions 
identified earlier, for rods arranged in triangular and square 
arrays. The results so generated can then be used to study 
Zircaloy cladding oxidation along the length of a fuel rod. 
Laminar flow regime is considered in view of the fact that forced 
flow is practically depleted following a LOCA. 

Analysis 

Physical model 

Fuel rods in a vertical configuration are considered arranged in 
a reactor core in triangular or square arrays. Shell-wall effects 
are discounted, and an array is divided into several identical 
subchannels: six of included angle 0 o = 30 ° in a triangular array 
and four of 0 o = 45 ° in a square array. Distance between two 
adjacent rods is defined through pitch P. 

A subchannel has AB,  BC ,  and CD as the symmetry lines 
across which the velocity and temperature gradients are zero 
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(Figure 1). The sector AD of the rod surface dissipates heat at a 
uniform flux q. 

Governing equations 

We assume fully developed hydrodynamic and thermal 
conditions and write the laminar momentum equation as 

0= dPd dps 
+ V" (#Vu)+ p9 (1) dx dx 

O t -R "-'1 
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where the + sign for the body force term applies to downward 
flow, and the - sign applies to upward flow. In Eq. (1), Po and 
flo are defined at a reference temperature To for evaluating the 
static pressure gradient and the buoyancy terms. Thus 

dps 
+Pg = +- (P -Po)g (2) dx 

Second-degree correction to density due to temperature 
variations can be expressed through 

8p 1 
P=Po + ( ~ ) p A T  +~ ( t?2p ~ \ /pAv 2 (3) 

where A T =  T - T  o. Using the definition f l=-(1/p)(Sp/ST)t  p 
and noting fl~ I/T, we obtain 82p/ST 2 = 2fl2p. Hence from Eq. 
(3), it follows that 

P-Po 
floA T(1 - f l o A T )  (4) 

Po 

accounts for second-order density variation. If the analysis were 
restricted to Boussinesq's assumption, the term in parentheses 
would be equal to unity. 

Substituting Eqs. (2) and (4) into Eq. (1) yields 

V " (tWu)=d~Pd- +_poflogA T( l - floA T) (5) 
ax 

For the purpose of nondimensionalization of the momentum 
and energy equations, we wish to use the property values at the 
average temperature of the rod surface, denoted through suffix 

Notat ion 

A 
A* 
Cp 
Dh 
f 
G 

Gr 

k r 
rh 
vh* 
Nu 
?/ 

Pt 
Pw 
PDR 
P 
QRC 
QRR 
q 
qr 
R 
Re 
r 
r* 
T 
T* 
TB 
To 

Flow area, ½R2(PDR 2 tan 00 - 00) 
AIR 2 
Specific heat at constant pressure, kJ/kg K 
Hydraulic diameter, m 
Fanning friction factor 
Nondimensional pressure gradient, 

dx  / flwUref 

Grashofnumber,  - ~  Vw / 

Acceleration due to gravity, m/s 2 
Convective heat transfer coefficient, W/m 2 K 
Molecular thermal conductivity of the fluid, 
W/mK 
Radiative conductivity, W/mK 
Mass flow rate, kg/s 
Dimensionless mass flow rate, rh/pwUrefR 2 
Nusselt number, hDh/k w 
Normal to a surface 
Heat transfer perimeter, (RO0), m 
Wetted perimeter, m 
Pitch to diameter ratio 
Axial pressure, Pa 
Fraction of heat transferred by conduction 
Fraction of heat transferred by radiation 
Heat flux on the rod surface, W/m 2 
Heat flux due to radiation exchange, W/m 2 
Rod radius, m 
Reynolds number, thDh/A#w 
Radial coordinate, m 
Dimensionless radial coordinate, r/R 
Temperature, °K 
Dimensionless temperature, ( T -  To)/Tre f 
Bulk temperature, °K 
Temperature at the cell-center, °K 

Tref 

L 

U 
U* 

U ref 

X 
X* 

fl 

0 
0o 
g, 

P 
KR 

~L 
~'w 
# 
V 

qPt/kwth*, °K 
Prescribed average temperature of the rod surface, 
o K 
Local axial velocity, m/s 
Dimensionless velocity, U/Urer 

Dimensionless velocity I = ( ~ x P d )  R2 ] ,  m/s 
#w J 

Axial coordinate, m 
x/R 
Coefficients for expressing a differential operator 
at a node through function values at neighboring 
nodes 
Coefficient of thermal expansion, - (1/p)(~p/ST)p, 
K-1 
Angle, radian 
Included angle of a subchannel, radian 
Rod surface emissivity 
Steam density, kg/m 3 
Rosseland mean absorption coefficient, 
(atm. m)-  l 

Optical thickness 
Wall shear stress, Pa 
Dynamic viscosity, Pa. s 
Kinematic viscosity, mZ/s 

Superscripts and Subscripts 

- Average value 
* Dimensionless value 
d Hydrodynamic 
eft Effective value 
o Corresponding to temperature T o 
R Radiation 
ref Reference condition 
s Hydrostatic 
w Correspo_nding to average temperature of the rod 

surface Tw 
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w, as reference conditions. Hence Eq. (5) becomes 

R2 R2 p°fl°gA T (1 - 
V" 0t*Vu*)= - -  dpa ~ floAT) (6) 

/2wUre f dx - ~wUref 

Setting G = (R2/#wUra)- (dpa/dx) = 1 normalizes the momentum 
equation with respect to the imposed hydrodynamic pressure 
gradient and affords evaluation of ura in terms of dpa/dx. 

The thermal energy equation, including radiative transport, is 

c~T 
pCpU ~-X----V' (kVT)-V" ~r (7) 

Radiative transfer can take place between the rods and between 
a rod and the fluid surrounding it. However, in a symmetric 
arrangement, rod to rod heat exchange is absent if the decay- 
heat dissipated at each rod is the same. For fully developed 
thermal condition for uniform heat flux, input implies 

c?T dTB qPt (8) 
~x dx thCp 

The rod to fluid radiative transfer can be evaluated from a 
knowledge of order of the opacity of the steam in the 
subchannel. The least characteristic length in a subchannel is 
AB=(PDR-1)R=L,  say. The Rosseland mean absorption 
coefficient KR(T ) for steam has a value of 328 (atm. m)- 1 at a 

typical temperature of 833K/8 Thus at 68atm, the optical 
dimension of interest is 

ZL = tcRL = 328 x 68 x 0.2 x 0.005 ~- 22 

for PDR = 1.2 and rod diameter of 10mm. In other words, the 
medium is optically very thick, ZL'> 1, and a diffusion model for 
radiation transfer is quite appropriate, ~9 

16aT 3 
V' qr = - - - V T =  -kr(T)VT (9) 

3~CR(T) 

At the surface, the expression for kr(T) should be multiplied by a 
factor of (1 -e) /2  to account for the fact that the surface is not 
black but has an emissivity e.20 

If as a first approximation, it is assumed the spatial 
thermophysical property variation can be accounted by writing, 
for example, 

1 4 
/,*=~ Z ~* (lO) 

i=O 

where 1, 2, 3, and 4 are the nodes neighboring the focal point 0. 
Such averaging eliminates nonlinearity of the governing 
equations caused by transport property variations. Equation (6) 
is then rewritten as 

~*VZu * = - G + ( RZ P°~°gA T-~ (1 -floaT) (11) 
- - \  #wUref /t  

The energy equation (Eq. 7), together with Eqs. (8) and (9), can 
be written as 

F:* V2T * - R2qPt f pu~ (12) 
eft - - - -  - -  kwTref \ m fl 

Introducing dimensionless temperature T* and the area- 
averaged mass flow rate defined as 

fo" /n= pudA =pwuraR 2 p*u*dA* (13) 
0 

permits Eq. (12) to be rewritten as 

/~e, f fV2T,=(  qPt )p*u* (14) 
\kwth* T~a} 

Whereas q, Pt, and kw are to be prescribed before commencing 
the solution of the governing equations, Tracannot be evaluated 
until rh* is estimated at the end of the computation. 
Temperatures can be determined only after the evaluation of 
T~a. Moreover, whereas p* and u* vary from point to point, th* 

is constant for given G, buoyancy, fuel rod emissivity, and 
average wall temperature conditions. 

The buoyancy term in Eq. (11) can be rearranged as 

R2 poflogA T 
(1 -floAT) 

~wUref 

=IflwPwORaTra-](P°)(fl°~T*(1-floT, efT*, (15) 
L PwUref 3\Pwl\flw/ 

The term in the square brackets is simplified after substituting 
for Tref and the definition of the Reynolds number as 

( ~  flwO~R3-)( #wPt "]=Gr(Pt .~w']_4(  Gr'] 
V z /] \PwUrefRZm*J \ m J -  \ R e /  

Both Reynolds and Grashof numbers are defined using the 
property values at the average temperature of the rod surface, 
which is considered known or can be evaluated otherwise, say, 
from the one-dimensional analysis of the thermal-hydraulic 
loop. 

Considering that density and coefficient of thermal expansion 
of steam flowing through the rod bundle are inversely 
proportional to the temperature, we can now write the 
momentum equation (Eq. 11) as 

Gr (Tw'~2T*F1-Tref T* (16) ~*V2u*= -G+-4 Re \To/  L 7"0 

and the energy equation (Eq. 14) as 

k*frVZ T* =(~- )u  * (17) 

It is useful to reiterate that Eqs. (16) and (17) have been derived 
by considering variation of thermophysical properties, 
including radiation transfer, and accounting for second-order 
changes in density in the buoyancy term. The radiation affects 
the momentum transport because of the coupling of the two 
governing equations through the buoyancy term. The value of 
G = 1 can be chosen without loss of generality, thus normalizing 
the momentum equation. 

These equations can be specialized to 

(a) Boussinesq's approximation if the terms in parentheses in 
Eqs. (16) and (17) are set to unity. 

(b) Variable properties, but first-degree buoyancy-dominated 
results are obtained when the term in square brackets in Eq. 
(16) is equated to unity. 

(c) Constant property case is obtained by additionally setting 
it* = 1 and k*fr=constant. 

(d) Constant property forced convection solution results by 
setting Gr = 0. 

(e) If radiation transfer is not significant,/7:*~= 1. 

Thermophysical properties 

The equation of state for steam at 68 bar and in the temperature 
range of 700to 1000 K was found to follow the ideal gas law with 
a deviation of less than 5 ~o and 1.5 ~ ,  respectively, at the lowest 
and highest value of the temperature. Hence the steam density 
and thermal expansion coefficient were considered inversely 
proportional to temperature. 

The fluid bulk temperature was evaluated accounting for 
variation of density as 

S puTdA S u*dA* (18) T B - ~  or T ~ - f  
(u*/T*)dA* 

Hence 

r h * = - ( ~ ) Q "  (19) 

The velocity and thermal conductivity of steam were correlated 
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for temperatures higher than 700 K to less than 1% deviation as 

p =  39.26 x 100-6( - 0.6118 + 2.2660-0.654702) (kg/ms) (20) 

and 

k = 0.0592(0.8302 - 0.03208 + 0.490382) (W/mK) (21) 

The Rosseland mean absorption coefficient was approxi- 
mated, using published results, ~8 for different temperature 
ranges: 

tc R = 574.0(2.8 - 2.4280 + 0.628602) (atm'  m)-  ~ (22) 

for T <  Il15°K, where 0= T/555, and 

h-R=260(atm.m) - t  f o r T > l l l 5 K  (23) 

Boundary conditions 

The boundary conditions are 

(a) u* = 0 on the solid surface AD, I = 1. 
gu* 3T* 

(b) 30 = c~8 = 0 along the symmetry lines AB, J = 1 and CD, 

J=M.  
(c) Uniform heat flux on the rod surface: 

3T*[ rh* 
&* ],* = ~ k*~wOo (24) 

(d) Along the symmetry line BC: 

~?u* ?T* 
0 

? n * -  3n* 

Finite-difference equations and method of solution 

The dimensionless momentum and energy equations (Eqs. 11 
and 14) were solved simultaneously by a central difference 
scheme. The computation domain ABCD (Figure la) was 
divided into a regular zone ABED and an irregular zone BEC. 
The angular grids are A0 apart in either zone. Radial grids are 
equidistant in the regular zone. In the zone BEC, arcs are drawn 
from the points of intersection of the symmetry line BC with the 
radius from 0. The distance, along a radius, between two 
consecutive arcs sets the radial grid length in the irregular zone. 

At an inner node O(i,j), the Laplacian is expressed as 
4 

V2~b= ~ ~,q~, (25) 
i - O  

The coefficients :q are evaluated by comparing the terms of V2q~ 
with the Taylor's series expansions of q~ at the neighboring 
nodes (Figure I). 

The difference forms of Eqs. (11) and (14) were solved 
simultaneously by a cyclic iteration process: from I = 1 to N and 
back from N to 1, J varying from 1 to M. The advantage of a 
cyclic iteration is that a node was traversed in both forward and 
backward marching, thus accelerating convergence) 6 

In the special case of constant properties and Boussinesq's 
assumption, solutions of Eqs. (11) and (14) need no input 
information other than the Gr/Re as a parameter• When effects 
of variable transport proj0erties were sought, the value of 
average wall temperature, T w, had to be prescribed. The cases of 
Tw = i000 and 2000°K were tested for two values of rod surface 
emissivity, e = 0.5 and 1.0. The value of T o, which the reference 
density Po for the buoyancy term was based on, was chosen to be 
that prevailing at the top corner, point C, of Figure 1. The 
temperature at this point is expected to be the lowest owing to 
maximum convection effects. Thus To = T(N, M). Inclusion of 
second-degree variation in density due to buoyancy requires an 
input value for Trefin Eq. (16)• By definition, Tre f depends on the 
wall heat flux and the dimensionless mass flow rate rh*, as well as 
the rod geometry and the knowledge of wall temperature. That 
is, second-degree buoyancy effects were investigated by 

prescribing a wall heat flux, typically q=2500W/m 2. The 
evaluation of Tre f w a s  kept inside the iteration loop so that the 
rh* value was updated at the end of each iteration. 

Whereas satisfying condition (a) was of little difficulty, the 
gradient conditions (b) and (c) were satisfied by quadratic 
interpolations along the orthogonal grid lines. Imposition of 
zero gradient conditions along BC called for maximum care. We 
observed that the accuracy and convergence of the computed 
transport rates depended significantly on the extent condition 
(d) was satisfied at each of the intersecting node points. 

The gradient at a node (Figure lb) was expressed in terms of 
the Taylor's series expansions of the function at the neighboring 
points 1 to 5, following Greenspan, 21 

?@ 
_ 3q5 cos 8 - 8 ~  sin 0 (26) 

On 8r rg8 

and 

~.0 5 
- - =  Y' ~i¢i (27) 
0n i= 7o 
At the bottom and top corner, points B and C, all three gradient 
values are zero: 

0q5 34~ 34) 0 (28) 
3r 30 0n 

For the purpose of computation, each of the three gradients in 
Eq. (28) was added, and the general equation derived was 
satisfied at points B and C. 

Five-point gradient interpolation was also adopted at nodes 
adjacent to point C. 

Solution of the governing difference equations and 
application of the wall boundary condition afford evaluation of 
a calculated dimensionless average temperature of the wall: 

1 M 

T 'c=  ~ ~[ T*(1,J) (29) 
j = l  

On the other hand, the prescribed wall temperature, Tw, can be 
written nondimensionally as 

~. _ Tw - T ( N ,  M )  (30) 
Tr~f 

In the converged situation, values from Eqs. (29) and (30) should 
agree within prescribed limits, for example, 10 -4 . The 
difference, Tw* - T*, was therefore, used as a correcting term in 

• c 

updating the nodal temperature value at the end of each 
iteration cycle: 

* T * ( I , J ) -  * - - *  (31 T,+~(I,J)= (Tw~ Tw) ) 

where n denotes the iteration number. 
A second independent and absolute test of convergence was 

recognized and adopted for forced flow (Gr/Re = 0). Under fully 
developed conditions, 

( dpd~A 
~,~e,~ =\ -T;  / 

which results in 

1 ~  (3u*~ .(0o~ - R 2 ( d P d )  (32) 

The right-hand side of Eq, (32) is G by definition, and we have 
chosen G = 1 for computation. If we denote the left-hand side as 
GN, it simplifies that a converged forced flow solution should 
yield GN = 1. 

The value of GN was computed and monitored for each of the 
geometries investigated for the case Gr/Re = 0. An agreement of 
better than 1% was sought in each case by varying the grid size, 
relaxation factor, and initial values. The optimum values 
determined were then adopted for buoyancy- and radiation- 
dominated variable property solutions. 
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Tab le  1 Constant property forced convection results 

(a) Triangular Array, O=Tt 
fRe Nu 

$1. No. PDR Oberjohn Rehme Dwyer et al. 23 Sparrow et al. 7 Present Dwyer et al. 23 Ramachandra 24 Present 

1 1.2 24.906 25.20 24.95 25.3 25.31 6.90 6.95 7.24 
2 1.3 27.399 27.30 27.42 27.6 27.80 9.03 9.12 9.49 
3 1.5 30.922 30.72 31.02 31.1 31.10 11.22 11.28 11.42 
4 2.0 39.216 38.55 39.39 39.3 39.08 15.26 15.38 15.45 

(b) Square Array, 0o=~/4 

fRe Nu 

$1. No. PDR Kim 25 Oberjohn* Meyder 26 Rehme* Present Rehme 27 Ramachandra 24 Present 

1 1.2 20.27 20.273 20.25 - -  20.33 3.68 3.86 3.79 
2 1.3 24.17 24.131 - -  - -  24.30 5.82 6.00 6.11 
3 1.5 29.73 29.687 29.75 - -  29.62 9.29 10.03 9.74 
4 2.0 40.29 40.189 - -  40.38 40.89 15.05 .-- 15.25 

* W. J. Oberjohn and K. Rehme are cited by Johannsen. 22 

The initial values for temperature at different nodes were 
chosen as T*(1, J) = 1.00 and T*(I, J) = 0.0 for I # I. The initial 
value for velocity had a marked influence on convergence. For a 
triangular array 00 = n/6 and PDR = 1.2 to 2 and a square array 
Oo = n/4 and PDR < 2, a good approximation for the initial 
velocity distribution was found to be 

u*(I, J )=  Haggen-Poiseulle profile x WF for I # ! 

where WF is a weighting factor that decreased from 1.75 to 1.25 
as the PDR was increased from 1.2 to 2.0 with 00 = n/6. In case 
of 00 = re/4, the WF values decreased from 3.66 at PDR = 1.2 to 
2.10 at 1.5. The optimum values were determined again by the 
convergence of the forced convection results. The Haggen- 
Poiseulle profile in case of buoyancy-dominated flow was 
evaluated, including the Gr/Re effects (Eq. 16). For PDR = 2.0 
and 0o=~/4, a uniform velocity distribution u*(l,J)=l.O, 
I # 1, was found to be a good initial choice. 

Overrelaxation was found to generally accelerate 
convergence. Typically, f~, = 1.5 for velocity and ~T = 1.2 for 
temperature were good factors for forced convection in 0o = ~/4 
and PDR=2.0,  for which geometry the results could be 
compared with the results reported in the literature. 

However, unequal relaxation factors resulted in unequal 
residues in u* and T*, especially when free convection effects 
were included. To eliminate any likely relaxation factor induced 
error, therefore, we chose f t , = f t r =  1.0, which added by the 
cyclic iteration resulted in nearly equal residues for u* and T*, 
although at a relatively higher number of iterations of the order 
of 500. The residues at convergence were less than 10 -5 

Transpo r t  parameters  

Fanning's friction factor for constant density fluid is defined 
through 

dpd 4fpu2v 

dx 2D h 

To account for density variation, we propose to write the above 
expressions as 

d x - ~ \ A )  \ Z )  (33) 

where Pw is the density at average wall temperature, 7"w. On 
rearrangement, we get 

/ GA* D~2\ / A#,,,\ 

or 

fR GD~ZA* e= ~ .  (34) 

Friction factors so obtained can then be used in Eq. (33) for 
estimating the pressure differential needed for a given flow rate 
vh with prevailing wall condition in the geometry under 
consideration. 

Heat transfer at the rod surface takes place due to the 
combined effects of molecular and radiative conductivities: 

q=qc°nd+qrad= --(kw +kr) ~r ,=R 

The ratios of molecular and radiative conduction to total heat 
flux are, respectively, 

kw 1 (36) QRC 
kw+ kr ke~w 

and 

QRR = 1 - QRC (37) 

The convective heat transfer coefficient, h, defined on the basis 
of conductive transport, expressed in dimensionless form is then 

hD h QRC qD h 
N u -  Kw - .  kwTref(Z w - T~) (38) 

After substituting for Tref in Eq. (38), we obtain 

QRC rh*D~' 
Nu - - (39) 

Oo(T* - T~) 

Results and discussion 

Cons tan t  p roper t y  fo rced  c o n v e c t i o n  

Computations were first conducted for the constant property, 
forced convection conditions so that the formulation could be 
tested by comparing it with the results available in the literature. 
In Table 1, we present the friction factor and heat transfer results 
for both triangular and square rod arrays along with typical 
information in the literature that our results are found to be in 
very good agreement with. 

Parameter  nomenc la tu re  

For the convenience of discussion, we have adopted the 
following nomenclature in presenting the results graphically. 
I D E N S = I  or 0 denotes, respectively, whether property 
variations are considered or not. The parameter fl= 1 or 2 
indicates first- or second-degree density variation; I R = 0  or 1 
when radiation is ignored or accounted for; e = l  or 0.5, 
respectively, for two values of fuel rod surface emissivity. 
Numbering on the graphs follows the sequence IDENS,/3, IR, 
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U 

I 
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Figure 2 Effects of buoyancy on velocity profile along J= 1, square 
array, PDR=2.0 

and ~. Subscrip_t a denotes Tw=1000°K, and subscript b 
corresponds to T W = 2000°K. 

Constant property buoyancy effects 

When first-degree density variation is considered under 
Boussinesq's assumption, the momentum equation (Eq. 16) 
simplifies to 

V2u *= - G_+4(R~) T* (40) 

The dimensionless temperature T* is ordinarily positive, since 
the reference temperature To= T(N,M) is likely to be the 
minimum in the flow domain. Since T* is highest on the rod 
surface and decreases toward the maximum convection zone 
(BC in Figure la), the buoyancy effects decrease accordingly 
and ultimately vanish at C(T* = 0) for any value of Gr/Re. The 
forced flow potential is negative ( -  G) by definition. Buoyancy 
term in Eq. (4) assumes +(Gr/Re)T* for downflow and 
- (Gr /Re)T* for upflow. In other words, buoyancy effects 
support an upward main flow and oppose a downward flow. 

Geometrically, the distance AB in Figure l(a) marks the 
minimum flow area, and therefore, is a likely zone of extreme 
fluid temperature. For  the purpose of quantitative comparison, 
we have hence, plotted representative velocity and temperature 
distributions along AB ( J =  l). 

Figure 2 notes the effects of buoyancy on velocity profile in a 
square array (Oo=n/4) with PDR=2.  The pure forced 
convection velocity profile (curve 1) is considerably enhanced in 
an upflow when G r / R e = - 1 . 0  (curve 2). The maximum is 
shifted to a lower radius because the buoyancy effect is felt most 
strongly closer to the wall. On the other hand, the buoyancy 
strongly reduces convection in downflow, as is observed in 
curves 3 and 4 for Gr/Re = 1.0 and 2.0. The flow is about to 
separate on the rod surface for Gr /Re= 1.0 and reversed for 
Gr/Re = 2.0. 

The direct effect of velocity variation is on the subchannel 
average mass flow rate, which in turn, controls the fRe  value 
through Eq. (34). A reduced ~h* in downflow results in higher 
fRe  value. Similarly, buoyancy reduces frictional resistance in 
upflow. Figures 3(a) and 3(b) show the variations for both 
triangular and square arrays. The increase in resistance is most 
pronounced for high PDR value and is less in case of a 
triangular array compared with a square arrangement. 

The effects of reduced flow rate in downflow and increase 
in upflow due to buoyancy correspondingly reflect in the 
convective heat transfer rate (Figures 4a and 4b). Both in 
Figures 3(a) and 4(a), the buoyancy effects are negligible in a 
triangular array for PDR = 1.2 or 1.3. Since such PDR values 
are typical of the arrangements in a nuclear reactor, this 
observation is of considerable significance. 

Variation of convection effects due to geometrical 
configuration results in highest rod surface temperature at A 

and smallest at D (Figure 1). These variations about the mean 
are + 0.25 % for pure forced convection, increasing to + 1.5 % at 
Gr /Re= 2.0 for PDR= 2.0 in a square array (Figure 5). For 
smaller pitch to diameter ratios, although buoyancy effects are 
less pronounced, the forced convection surface temperature 
deviates from isothermal condition to a more significant degree. 

Variable properties, buoyancy, and radiation 

Having generated the constant property pure forced convection 
and buoyancy-dominated transport rates, we carried out 
calculations, including effects of variable properties of steam at 
68 bar, second-degree density changes due to buoyancy, and 
radiation transfer. The numbering of graphs in Figures 6 1 0  
follow the nomenclature of Table 2. Apart from numerical 
identification, suffix a corresponds to a wall average 
temperature Tw= 1000K, and suffix b to Tw=2000K. 

Consider Figures 6(a) and 6(b) for friction factors in a square 
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array of PDR = 1.3. Curves 1 and 2 are not much different from 
each other, indicating that second-degree density changes are 
not important for constant property solutions. On the other 
hand, examine curves 4a versus la  and 4a versus 5a in Figure 
6(a). The fRe  value is increased from 38.47 to 94.63 when 
property variations are accounted for with # = 1  condition 
Gr/Re = 10.0. With Gr/Re = 2, the higher value is moderated to 
74.61. However, when the wall temperature is taken as 
Tw = 2000°K, curves 4b and 5b in Figure 6(b) indicate nearly 
equal value of 64.87. Apparently, with higher wall temperature, 
the relative variations of density are smaller. These observations 
call for a prescription of a threshold condition when second- 
degree density variation is warranted. We attempt an answer to 
this later. 
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Figure 5 Rod surface temperature variations in a buoyancy- 
dominated f low through a square array, PDR=2.0 

Figure 6 Friction factors for a square array, PDR=I .3 ,  including 
effects of property variations and radiation transfer 
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Radiation is parallel to convection' and accounting for 
radiation transfer results in a more uniform temperature 
distribution and hence less severe buoyancy-related effects. 
Curves 3, 6, and 8 represent results for a black-clad surface, and 
curves 7 and 9 are for a gray-clad surface of ~=0.5. In both 
Figures 6(a) and 6(b), the f R e  values are observed to be lower in 
the presence of radiation. We present representative fRe  values 
for PDR = 2.0, 0 o = n/4, and Tw = 2000 K in Figure 7 without 
further explanation. 

The effects of property variation, buoyancy, and radiation 
transfer on the rod and fluid temperature can be noted from 
representative plots in Figures 8(a) and 8(b). The hot spot 
temperature is 1038 K for Tw = 1000 K if only property variation 
and buoyancy are accounted for. The temperature moderates to 
1025 K if radiation transfer is considered. 

The influence of lDENS = 1, fl = 2, IR = I on Nusselt numbers 
is opposite to those of fRe  following the discussion for 
constant property buoyancy effects. In Figures 9(a) and 9(b), we 
have presented the convective heat transfer coefficients for 
Tw = 1000 ° and 2000°K, respectively. Whereas fRe depends 
solely and inversely on the variation of rh* (Eq. 34), Nu varies 
directly with rh* and inversely with (T* - T~) (Eq. 39). Thus the 
difference between Nusselt numbers is moderate compared to 
the fRe  results. A high 7"w value obviously would moderate the 
variation still further (compare Figures 9a and 9b). 

By virtue of Eqs. (36) and (37), the radiation component of 
total heat transfer was constant for a given value of Tw and e. 
Radiation accounted for 14.2% at Tw=1000K_ for ~=1, 
reducing to 11.0% with a=0.5. The two values at Tw=2000K 
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Figure 9 Convective heat transfer under variable property, 
buoyancy, and radiation transfer condit ions, Po=lt /4, PDR = 1.3 
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Figure 10 Nusseit number variations due to IDENS,/~, and IR in a 
square array, PDR=2.0 

T a b l e  2 Nomenclature for graph numbering 

Curve No. IDENS fl IR s 

1 0 1 0 - -  
2 0 2 0 - -  
3 0 1 1 1.0 
4 1 1 0 - -  
5 1 2 0 - -  
6 1 1 1 1.0 
7 1 1 1 0.5 
8 1 2 1 1.0 
9 1 2 1 0.5 

were 29.9 70 and 24.3 %, respectively. Recall that the transport 
rates in a triangular array with P D R =  1.2 and 1.3 remained 
practically invariant when constant property buoyancy effects 
were considered (Figures 3a and 4a). We noticed similar 
invariance, within limits of + 5 %, for 00 = n/6 and PDR = 1.3, 
even when property variations and radiation transfer were 
accounted for. 

The influence of IDENS, /3, and IR is significant for 
PDR = 2.0 and 00 = 7t/4, for which we present the convective 
heat transfer coefficients in Figure 10. 

Limits of f i rs t -degree densi ty  var iat ion 

As noted, accounting for second-degree density change becomes 
necessary when the wall temperature is lower (for example, 
Tw= 1000), buoyancy is significant in downward flow (for 
example, Gr /Re= 10), and property variations are considered, 
but radiation may be neglected. 

To establish a general criterion for including/3 = 2 effects, we 
attempted to summarize the Nusselt numbers for all situations 
computed in this study. Since density change is linked to 
temperature difference, we chose [(Tw-TB)/Tw] as the 
independent parameter and plotted the ratio (Nu# = 2/Nu# = 1) in 
Figure 11. The Nusselt number ratio was calculated for a pair of 
parameters, where all parameters except the /3 value were 
identical. 

The plots in Figure 11 indicate second-degree density changes 
can be neglected in upflows, (Gr/Re)<0.  In downflows, 
however, the second-degree change begins to reflect as early a 

temperature difference as (Tw-TB)=10°K at Tw=1000°K, 
especially if property variations are included. The correction of 
Nusselt number is as much as 30 % for/3 = 2 compared to/3 = 1 of 
IDENS = 1 [at (Tw- TB) = 100 K]. The convection is lower by 
6 % for the same value of AT if property variations are neglected. 

Since the results presented in Figure 11 have been generated 
by considering several geometric and thermal conditions, it may 
be plausible to apply these results to laminar convection in other 
geometries as well. The information can be used as follows. 
First, evaluate Nu and TB for a given Twgeometry and Gr/Re, 
considering /3= 1. Compute (Tw-TB)/Tw, and if the value 
exceeds the threshold limit, apply # = 2 correction to Nu from 
Figure 11. The bulk temperature may then be recalculated. The 
two curves, IDENS = 0 and 1 in Figure 11 also quantitatively 
indicate the penalty for ignoring property variations in a 
downflow. At (T w -  T , )=30  K, the property variation causes 
a 4% rise in Nu, whereas the rise is about 167o at 90K 
temperature difference on a T~= 1000 K base. 

C o n c l u s i o n s  

We undertook this numerical study of laminar, combined free, 
and forced convection together with radiation transfer in square 
and triangular arrays with the primary objective of obtaining 
transport rates for a PWR under LOCA condition. Although 
the PDR value of interest for a PWR is small, that is, 1.2 or 1.3, 
we have generated results for higher values for completeness. 
The fluid is taken to be steam at 68 bar whose thermophysical 
properties are considered variable. High optical dimension, of 
the order of 20 for a low PDR = 1.2, permits applying a diffusion 
model for radiation transfer. 

The buoyancy effect supports an upward flow and opposes a 
downward flow. Thus the flow rate and convective heat transfer 
are enhanced and friction factor reduced in upflow due to 
buoyancy. Reverse effects are observed in downflow, where 
typically, flow separation and backflow can be encountered at 
high Gr/Re value, especially in a square array with high PDR 
value. Fortunately, buoyancy causes less variation at smaller 
PDR values of 1.2 and 1.3. Transport rates in a triangular array 
and low PDR are practically insensitive to buoyancy effects. 

Transport rate variations in a square array, even at low PDR, 
are sensitive to effects of fluid property variation, especially in 
downflow. Typically, the fRe  value with property variations for 
PDR = 1.3, 00 =n/4, Gr/Re = 10.00, # = 1 was found to be about 
two and a half times the constant property value. Radiation 
transfer between the fuel rod and the fluid reduces temperature 
variation in the coolant and thereby moderates the effects of 
buoyancy and property changes. 

The heat transfer rate for _00 = n/4, PDR = 1.3 by radiation is 
about 14% of the total at Tw= 1000K. The rate increases to 
30% at 2000 K, assuming the fuel rod surface to be black. 

Boussinesq's approximation can be accepted in most 
situations involving buoyancy in upflow. In downflow, 
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however, second-degree density changes account for the 
increase in Nusselt number by 6~o compared with constant 
properties and nearly 30 ~ with variable properties when wall to 
bulk temperature difference is 10~o of the average wall 
temperature. In other words, Boussinesq's assumption gives a 
conservative estimate of convective heat transfer coefficients for 
a heat dissipating surface subjected to fluid flow in the 
downward direction. 

In this study, the reference conditions, including the 
thermophysical properties for defining Re, Gr, and Nu, have 
been taken at the average temperature of the wall for 
convenience in applying the results. 
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